| Enrollment No: | Exam Seat No: |
|----------------|---------------|
| Em onnient No  | Exam Seat No  |

## C. U. SHAH UNIVERSITY

## Winter Examination-2022

**Subject Name : Power Electronics - I** 

Subject Code: 4TE05PEL1 Branch: B.Tech (Electrical)

Semester: 5 Date: 22/11/2022 Time: 02:30 To 05:30 Marks: 70

## **Instructions:**

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

| <b>)-1</b> |            | Attempt the following questions:                                                                                                                                                                 | (14) |
|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | a)         | In the method of phase control, the phase relationship between & is controlled by varying the firing angle a) supply current, supply voltage b) end of the load current, end of the load voltage | 1    |
|            |            | c) start of the load current, start of the load voltage                                                                                                                                          |      |
|            |            | d) load current, load voltage                                                                                                                                                                    |      |
|            | <b>b</b> ) | In a single-phase half-wave thyristor circuit with R load & Vs=Vm sinωt, the maximum value of the load current can be given by                                                                   | 1    |
|            |            | a) 2Vm/R                                                                                                                                                                                         |      |
|            |            | b) Vs/R                                                                                                                                                                                          |      |
|            |            | c) Vm/2                                                                                                                                                                                          |      |
|            | `          | d) Vs/2                                                                                                                                                                                          | 1    |
|            | c)         | In a single pulse semi-converter using two SCRs, the triggering circuit                                                                                                                          | 1    |
|            |            | must produce  a) two firing pulses in each half evals                                                                                                                                            |      |
|            |            | <ul><li>a) two firing pulses in each half cycle</li><li>b) one firing pulse in each half cycle</li></ul>                                                                                         |      |
|            |            | c) three firing pulses in each cycle                                                                                                                                                             |      |
|            |            | d) one firing pulse in each cycle                                                                                                                                                                |      |
|            | d)         | In a 3-phase full converter using six SCRs, gating circuit must provide                                                                                                                          | 1    |
|            | u)         | a) one firing pulse every 30°                                                                                                                                                                    | •    |
|            |            | b) one firing pulse every 90°                                                                                                                                                                    |      |
|            |            | c) one firing pulse every 60°                                                                                                                                                                    |      |
|            |            | d) three firing pulses per cycle                                                                                                                                                                 |      |
|            | e)         | For an RC full wave firing circuit the empirical formula for calculating                                                                                                                         | 1    |
|            |            | the value of RC is                                                                                                                                                                               |      |
|            |            | a) $RC = 157/\omega$                                                                                                                                                                             |      |
|            |            | b) RC = $157 \times \omega$                                                                                                                                                                      |      |
|            |            | c) $RC = \omega/157$                                                                                                                                                                             |      |
|            |            | d) RC = $157 \times \omega^2$                                                                                                                                                                    |      |



| f)  | The UJT terminals are                                                                                                      | 1 |
|-----|----------------------------------------------------------------------------------------------------------------------------|---|
|     | a) E, B1 and B2                                                                                                            |   |
|     | b) E1, E2 and B                                                                                                            |   |
|     | c) E, G and C                                                                                                              |   |
|     | d) G, S and D                                                                                                              |   |
| g)  | The effect of over-voltages on SCR are minimized by using                                                                  | 1 |
| O.  | a) RL circuits                                                                                                             |   |
|     | b) Circuit breakers                                                                                                        |   |
|     | c) Varistors                                                                                                               |   |
|     | d) di/dt inductor                                                                                                          |   |
| h)  |                                                                                                                            | 1 |
|     | a) F.A.C.L.F & C.B                                                                                                         |   |
|     | b) Shielded cables & twisted gate leads                                                                                    |   |
|     | c) Snubber circuits                                                                                                        |   |
|     | d) di/dt inductor in series with the gate terminal                                                                         |   |
| i)  | Thyristors are used in electronic crowbar protection circuits because it                                                   | 1 |
|     | possesses                                                                                                                  |   |
|     | a) high surge current capabilities                                                                                         |   |
|     | b) high amp <sup>2</sup> -sec rating                                                                                       |   |
|     | c) less switching losses                                                                                                   |   |
| • \ | d) voltage clamping properties                                                                                             | 1 |
| j)  | The load commutated chopper circuit consists of                                                                            | 1 |
|     | a) two thyristors and one commutating capacitor                                                                            |   |
|     | b) four thyristors and one commutating capacitor                                                                           |   |
|     | c) two thyristors and two commutating capacitors                                                                           |   |
| 1-1 | d) four thyristors and two commutating capacitors  The central strategy in which on and off time is guided by the pervious | 1 |
| k)  | The control strategy in which on and off time is guided by the pervious set of values of a certain parameter is called as  | 1 |
|     | a) time ratio control                                                                                                      |   |
|     | b) pulse width modulation                                                                                                  |   |
|     | c) current limit control                                                                                                   |   |
|     | d) constant frequency scheme                                                                                               |   |
| 1)  | The value of anode current required to maintain the conduction of an                                                       | 1 |
| ,   | SCR even though the gate signal is removed is called as the                                                                |   |
|     | a) holding current                                                                                                         |   |
|     | b) latching current                                                                                                        |   |
|     | c) switching current                                                                                                       |   |
|     | d) peak anode current                                                                                                      |   |
| m)  | are semiconductor thyristor devices which can be turned-on by                                                              | 1 |
|     | light of appropriate wavelengths.                                                                                          |   |
|     | a) LGTOs                                                                                                                   |   |
|     | b) LASERs                                                                                                                  |   |
|     | c) MASERs                                                                                                                  |   |
|     | d) LASCRs                                                                                                                  |   |
| n)  | GTOs have as compared to the Conventional Thyristors.                                                                      | 1 |
|     | a) less on-state voltage drop                                                                                              |   |
|     | b) less gate drive losses                                                                                                  |   |
|     | c) higher reverse blocking capabilities                                                                                    |   |
|     | d) faster switching speed                                                                                                  |   |



## Attempt any four questions from Q-2 to Q-8

| Q-2         |   | Attempt all questions                                                                                                                                                                         | <b>(14)</b> |
|-------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|             | A | Draw the structure of Power Diode. Explain the VI characteristics and switching characteristics of Power Diode with necessary diagrams.                                                       | 07          |
|             | В | Write a technical short note on: IGBT                                                                                                                                                         | 07          |
| Q-3         |   | Attempt all questions                                                                                                                                                                         | (14)        |
|             | A | Discuss causes and effect of di/dt and dv/dt problem for Thyristor and Explain its remedies.                                                                                                  | 07          |
|             | В | Write a technical short note on: Power MOSFET                                                                                                                                                 | 07          |
| Q-4         |   | Attempt all questions                                                                                                                                                                         | (14)        |
|             | A | Define Rectification. For a single-phase full wave-controlled converter with R load, draw the circuit diagram and necessary waveforms. Derive the mathematical expressions of output voltage. | 07          |
|             | В | Explain the two-transistor model of SCR using necessary diagram.                                                                                                                              | 07          |
| Q-5         |   | Attempt all questions                                                                                                                                                                         | (14)        |
| •           | A | Define Turn ON time. List the method of Triggering. Explain the R-C                                                                                                                           | 07          |
|             | В | triggering along with necessary circuit and waveforms. Explain 3-phase full wave AC voltage controller with Y and $\Delta$ connected load with necessary circuit diagrams and waveform.       | 07          |
| Q-6         |   | Attempt all questions                                                                                                                                                                         | (14)        |
| Q v         | A | Draw the circuit configuration of step-up chopper and explain its working. Derive its output voltage equation in terms of duty cycle and input voltage.                                       | 07          |
|             | В | Write a technical short note on: Thermal Protection of SCR using Heat                                                                                                                         | 07          |
| Q-7         |   | Sink.                                                                                                                                                                                         | (14)        |
| <b>Q-</b> 7 | A | Attempt all questions  Define and classify A.C. voltage controllers. Explain in detail single phase A.C. Regulators.                                                                          | 07          |
|             | В | What do you mean by Cycloconverters? Explain working 1-Phase                                                                                                                                  | 07          |
|             |   | Cycloconverters with necessary circuit diagram and waveform.                                                                                                                                  |             |
| Q-8         |   | Attempt all questions                                                                                                                                                                         | (14)        |
| •           | A | Define Duty Cycle. Explain the variation in duty cycle in Pulse Width                                                                                                                         | 07          |
|             | В | Modulation with necessary diagram.  Define Series Resonance. Explain single-phase series resonant inverter                                                                                    | 07          |
|             | D | using necessary circuit diagram and waveform.                                                                                                                                                 | 07          |

